Exercise 1.86

A package of aluminum foil contains $50 \mathrm{ft}^{2}$ of foil, which weighs approximately 8.0 oz . Aluminum has a density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$. What is the approximate thickness of the foil in millimeters?

Solution

Density is mass divided by volume.

$$
\text { Density }=\frac{\text { Mass }}{\text { Volume }}
$$

Volume is area times thickness.

$$
\text { Density }=\frac{\text { Mass }}{\text { Area } \times \text { Thickness }}
$$

Solve for the thickness.

$$
\begin{aligned}
& \text { Thickness }=\frac{\text { Mass }}{\text { Area } \times \text { Density }} \\
& =\frac{8.0 \mathrm{oz}}{\left(50 \mathrm{ft}^{2}\right) \times\left(2.70 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{8.0 \times \frac{1}{16} \times 453.59}{50 \times 12^{2} \times 2.54^{2} \times 2.70 \times \frac{1}{10} \mathrm{~cm}^{5} \times \frac{X}{8 \mathrm{~mm}^{8}} \times \frac{1}{\mathrm{~mm}}} \\
& \approx 0.018 \mathrm{~mm}
\end{aligned}
$$

This assumes that $50 \mathrm{ft}^{2}$ has two significant figures.

